Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: Exact solution of the Navier-Stokes equation

2002 ◽  
Vol 23 (20) ◽  
pp. 3574-3582 ◽  
Author(s):  
Marek Otevřel ◽  
Karel Klepárník
1986 ◽  
Vol 163 ◽  
pp. 141-147 ◽  
Author(s):  
J. M. Dorrepaal

A similarity solution is found which describes the flow impinging on a flat wall at an arbitrary angle of incidence. The technique is similar to a method used by Jeffery (1915) and discussed more recently by Peregrine (1981).


2017 ◽  
Vol 13 (2) ◽  
pp. 7123-7134 ◽  
Author(s):  
A. S. J Al-Saif ◽  
Takia Ahmed J Al-Griffi

We have proposed in this  research a new scheme to find analytical  approximating solutions for Navier-Stokes equation  of  one  dimension. The  new  methodology depends on combining  Adomian  decomposition  and Homotopy perturbation methods  with the splitting time scheme for differential operators . The new methodology is applied on two problems of  the test: The first has an exact solution  while  the other one has no  exact solution. The numerical results we  obtained  from solutions of two problems, have good convergent  and high  accuracy   in comparison with the two traditional Adomian  decomposition  and Homotopy  perturbationmethods . 


2014 ◽  
Vol 3 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Gunvant A. Birajdar

AbstractIn this paper we find the solution of time fractional discrete Navier-Stokes equation using Adomian decomposition method. Here we discretize the space domain. The graphical representation of solution given by using Matlab software, and it compared with exact solution for alpha = 1.


Author(s):  
Y. J. Kang ◽  
C. Yang ◽  
X. Y. Huang

The electroosmotic flow in a microchannel packed with microspheres under both direct and alternating electric fields is analyzed. In the case of the steady DC electroosmosis in a packed microchannel, the so-called “capillary model” is used, in which it is assumed that a porous medium is equivalent to a series of intertwined tubules. The interstitial tubular velocity is obtained by analytically solving the Navier-Stokes equation and the complete Poisson-Boltzmann equation. Then using the volume averaging method, the solution for the electroosmotic flow in a single charged cylindrical tubule is applied to estimate the electroosmosis in the overall porous media by introducing the porosity and tortuosity. Assuming uniform porosity, an exact solution accounting for the electrokinetic wall effect is obtained by solving the modified Brinkman momentum equation. For the electroosmotic flow under alternating electric fields in a cylindrical microchannel packed with microspheres of uniform size, two different conditions regarding the openness of channel ends are considered. Based on the capillary model, the time-periodic oscillating electroosmotic flow in an open-end microchannel in response to the application of an alternating electric field is obtained using the Green’s function approach to the Navier-Stokes equation. When the two ends of the channel are closed, a backpressure is induced to generate a counter flow, resulting in a new zero flow rate. Such induced backpressure associated with the counter-flow in a closed-end microchannel is obtained analytically by solving the transient modified Brinkman momentum equation.


Sign in / Sign up

Export Citation Format

Share Document